Excess Molar Enthalpies of Ternary Mixtures for Propanone or Benzene + Aniline + 2-Methyl-1-propanol and of Binary Mixtures for Propanone or Aniline + 2-Methyl-1-propanol at 298.15 K

Isamu Nagata,* Kazuhiro Tamura, and Koichi Miyai
Department of Chemistry and Chemical Engineering, Division of Physical Sciences, Kanazawa University, 40-20, K odatsuno 2-chome, K anazawa, Ishikawa 920, J apan

Abstract

Experimental excess molar enthal pies for theternary mixtures 2-methyl-1-propanol + aniline + propanone and 2-methyl-1-propanol + aniline + benzene and their constituent binary mixtures 2-methyl-1-propanol + aniline and 2-methyl-1-propanol + propanone at the temperature 298.15 K , measured by using an isothermal dilution calorimeter, are reported. The results have been analyzed using a polynomial equation and the UNIQUAC-associated solution model with binary and ternary parameters.

Introduction

We have conducted systematic studies on the thermodynamic properties of binary and ternary mixtures formed by aniline and butanols with propanone or benzene (Na gata, 1993, 1994a, b; N agata and K siązczak, 1995; Nagata et al., 1996). As a part of our program of measuring excess molar enthalpies of ternary liquid mixtures containing alcohol and aniline with a nonassociated component, we report the excess molar enthalpies at the temperature 298.15 K for ternary mixtures 2-methyl-1-propanol + aniline + propanone and 2-methyl-1-propanol + aniline + benzene and for their constituent binary mixtures 2-meth-yl-1-propanol + aniline or +propanone. Excess molar enthalpies of binary mixtures relevant to the ternary ones at 298.15 K had been published previously: aniline + propanone (Deshpande and Pandya, 1967; Nagata and Ksiạzczak, 1995); aniline + benzene (Deshpande and Pandya, 1965; Pannetier and Abello, 1965; SosnkowskaKehiaian and Kehiaian, 1966; Nigam et al., 1979; Nagata and Tamura, 1992); 2-methyl-1-propanol + aniline (Chao and Dai, 1989); 2-methyl-1-propanol + benzene (Brown et al., 1969; Vilcu and Cenuse, 1975; Nagata and Tamura, 1988).

Experimental Section

Materials. Guaranteed reagent grade 2-methyl-1-propanol (Wako Pure Chemical Co., purity > 99.0 mass \%) and aniline (K anto Chemical Co., purity > 99.0 mass \%) were used without further purification. C.P. benzene was recrystallized three times. Analytical grade propanone (Wako Pure Chemical Co., purity >99.8 mass \%) was fractionally distilled in a packed column (HP-9000B, Shibata Scientific Technology Ltd.) after drying over anhydrous copper sulfate. The purity was checked by gas chromatography, and no significant peaks of impurities in any of the components were detected. The densities of the chemi cals used, measured with an Anton-Paar densimeter at 298.15 K , agreed with literature values (Riddick et al., 1986) within $\pm 0.1 \mathrm{~kg} \cdot \mathrm{~m}^{3}$.

Procedure. Excess molar enthal py $\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}$ measurements at the temperature (298.15 ± 0.005) K were performed by using an isothermal dilution calorimeter described earlier (Nagata and Kazuma, 1977). Calibration of the calorimeter was carried out by comparing the excess molar enthalpies

* Fax: 81-762-4829. E-mail: tamura@keikou1.ch.t.kanazawa-u.ac.jp.
at 298.15 K of the mixture benzene + cyclohexane with literature values. The experimental errors were within $\pm 0.5 \%$ of $\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}$ in excess molar enthalpies and ± 0.0001 in mole fraction. Ternary excess molar enthalpies $\mathrm{H}_{\mathrm{m}, 123}^{\mathrm{E}}$, obtained by adding a component 1 to binary mixtures composed of components 2 and 3, were given as

$$
\begin{equation*}
\mathrm{H}_{\mathrm{m}, 123}^{\mathrm{E}}=\Delta \mathrm{H}_{\mathrm{m}}^{\mathrm{E}}+\left(1-\mathrm{x}_{1}\right) \mathrm{H}_{\mathrm{m}, 23}^{\mathrm{E}} \tag{1}
\end{equation*}
$$

where $\Delta \mathrm{H}_{\mathrm{m}}^{\mathrm{E}}$ is the molar enthalpies measured for the pseudobinary mixture, $\mathrm{H}_{\mathrm{m}, 23}^{\mathrm{E}}$ is the molar enthalpy for the initial binary mixture, and x_{1} is the mole fraction of component 1. Values of $\mathrm{H}_{\mathrm{m}, 23}^{\mathrm{E}}$ at three specified compositions x_{2}^{\prime} were interpolated by means of a spline-fit.

Results

The excess molar enthal pies of binary mixtures 2-meth-yl-1-propanol + propanone or +aniline at the temperature 298.15 K and atmospheric conditions are listed in Table 1, along with the deviations $\delta \mathrm{H}_{\mathrm{m}}^{\mathrm{E}}=\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}-\mathrm{H}_{\text {(cal) }}^{\mathrm{E}}$ of the experimental results minus values calculated from a polynomial equation of the form

$$
\begin{equation*}
H_{m, i j}^{\mathrm{E}} / J \cdot \mathrm{~mol}^{-1}=\mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}} \sum_{\mathrm{n}=1}^{\mathrm{p}} \mathrm{a}_{\mathrm{n}, \mathrm{ji}}\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}\right)^{\mathrm{n}-1} /\left\{1-\mathrm{k}\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}\right)\right\} \tag{2}
\end{equation*}
$$

where $a_{n, j i}$ and k are the coefficients obtained by the unweighted least-squares method. Table 2 presents the coefficients of eq 2 and the absolute arithmetic mean deviations and standard deviations, calculated from $\delta\left(\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}\right)=\sum_{\mathrm{i}=1}^{\mathrm{m}}\left|\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}-\mathrm{H}_{(\text {cal })}^{\mathrm{E}}\right| \mathrm{m}$ and $\sigma\left(\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}\right)=\left\{\sum_{\mathrm{i}=1}^{\mathrm{m}}\left(\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}-\right.\right.$ $\left.\left.\mathrm{H}_{\text {(cal) }}^{\mathrm{E}}\right)^{2} /(\mathrm{m}-\mathrm{p})\right\}^{0.5}$, where m is the number of experimental data points and p is the number of parameters. Figure 1 compares our experimental $\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}$ on the binary mixture 2-methyl-1-propanol + aniline or + propanone at 298.15 K with the literature. Figure 2 shows the deviations $\delta \mathrm{H}_{\mathrm{m}}^{\mathrm{E}}$ of $\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}$ for 2-methyl-1-propanol + aniline measured by Chao and Dai (1989) from the values calculated by eq 2 with the coefficients given in Table 2, and the results of Chao and Dai deviate noticeably from ours over the concentrated mole fraction range of 2-methyl-1-propanol. Similar differences between the measurements of Chao and Dai (1989) and ours (Nagata, 1993; Nagata, 1994b) were observed in excess molar enthal pies of the mixtures aniline + 1-butanol

Table 1. Experimental Binary Excess Molar Enthalpies at 298.15 K

X_{1}	$\mathrm{H}_{\mathrm{m}}^{\mathrm{E}} / \mathrm{J} \cdot \mathrm{mol}^{-1}$	$\delta \mathrm{H}_{\mathrm{m}}^{\mathrm{E}} \mathrm{J} \cdot \mathrm{mol}^{-1}$	X_{1}	$\mathrm{H}_{\mathrm{m}}^{\mathrm{E}} / \mathrm{J} \cdot \mathrm{mol}^{-1}$	$\delta \mathrm{H}_{\mathrm{m}}^{\mathrm{E}} / \mathrm{J} \cdot \mathrm{mol}^{-1}$	x_{1}	$\mathrm{H}_{\mathrm{m}}^{\mathrm{E}} / \mathrm{J} \cdot \mathrm{mol}^{-1}$	$\delta \mathrm{H}_{\mathrm{m}}^{\mathrm{E}} / \mathrm{J} \cdot \mathrm{mol}^{-1}$
2-Methyl-1-propanol (1) + Propanone (2)								
0.0537	351.6	-0.4	0.3776	1613.6	-0.3	0.6948	1522.2	-0.2
0.1073	662.4	0.3	0.4307	1686.7	-1.4	0.7625	1326.8	0.1
0.1612	932.2	0.7	0.4828	1723.2	-3.2	0.8286	1065.6	-0.2
0.2154	1162.6	1.3	0.5000	1728.0	-3.4	0.8917	743.6	-0.2
0.2697	1352.4	1.0	0.5578	1725.2	4.0	0.9519	362.7	-0.1
0.3240	1502.1	-0.5	0.6266	1654.9	2.0			
2-M ethyl-1-propanol (1) + Aniline (2)								
0.0690	361.1	-0.2	0.4242	1313.1	-1.2	0.6334	1250.0	-0.2
0.1386	663.9	-0.2	0.4806	1341.1	1.3	0.7092	1119.2	0.1
0.2076	908.4	3.7	0.4995	1339.8	-1.8	0.7847	930.0	1.6
0.2797	1097.6	-1.1	0.5298	1339.0	2.8	0.8579	680.0	-1.3
0.3521	1232.7	-1.6	0.5582	1321.6	-1.5	0.9304	370.0	0.2

Table 2. Coefficients of Eq 2 and Absolute Arithmetic Mean Deviations $\boldsymbol{\delta}\left(\mathbf{H}_{\mathrm{m}}^{\mathrm{E}}\right)$ and Standard Deviations $\boldsymbol{\sigma}\left(\mathbf{H}_{\mathrm{m}}^{\mathrm{E}}\right)$

Figure 2. Deviation of excess molar enthalpies for the binary mixture of 2-methyl-1-propanol (1) + aniline (2) at 298.15 K. Data points show the deviations of excess molar enthal pies of Chao and Dai (1989) from those calculated by eq 2 with the coefficients given in Table 2.
where $\mathrm{H}_{\mathrm{m}, 23}^{\mathrm{E}}$ is cal culated from eq 2 with the coefficients in Table 2 and Δ_{123} is expressed by

$$
\begin{align*}
& \Delta_{123} / R T=b_{0}-b_{1} x_{1}-b_{2} x_{2}-b_{3} x_{1}^{2}-b_{4} x_{2}^{2}- \\
& b_{5} x_{1} x_{2}-b_{6} x^{3} \tag{4}
\end{align*}
$$

(Nagata, 1993) or +2-butanol (Nagata, 1994b). These discrepancies seem to be mainly due to the calorimeters used in the measurements. Our results for these viscous mixtures measured by the isothermal dilution calorimeter can give precise and reliable values compared to the flow measurement of Chao and Dai (1989).

The ternary excess molar enthalpies for the mixtures 2-methyl-1-propanol (1) + aniline (2) + propanone (3) and 2-methyl-1-propanol (1) + aniline (2) + benzene (3) at 298.15 K are given in Table 3 and fitted to an equation of the form

$$
\begin{equation*}
\mathrm{H}_{\mathrm{m}, 123}^{\mathrm{E}}=\mathrm{H}_{\mathrm{m}, 12}^{\mathrm{E}}+\mathrm{H}_{\mathrm{m}, 13}^{\mathrm{E}}+\mathrm{H}_{\mathrm{m}, 23}^{\mathrm{E}}+\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3} \Delta_{123} \tag{3}
\end{equation*}
$$

Table 3. Experimental Ternary Excess Molar Enthalpies at 298.15 K

x_{1}	x_{2}	$\Delta \mathrm{H}_{\mathrm{m}, 123}^{\mathrm{E}} / \mathrm{J} \cdot \mathrm{mol}^{-1}$	$\mathrm{H}_{\mathrm{m}, 123}^{\mathrm{E}} / \mathrm{J} \cdot \mathrm{mol}^{-1}$	X_{1}	x_{2}	$\Delta \mathrm{H}_{\mathrm{m}}^{\mathrm{E}} / \mathrm{J} \cdot \mathrm{mol}^{-1}$	$\mathrm{H}_{\mathrm{m}, 123}^{\mathrm{E}} \mathrm{J} \cdot \mathrm{mol}^{-1}$	x_{1}	X_{2}	$\Delta \mathrm{H}_{\mathrm{m}}^{\mathrm{E}} / \mathrm{J} \cdot \mathrm{mol}^{-1}$	$\mathrm{H}_{\mathrm{m}, 123}^{\mathrm{E}} / \mathrm{l} \cdot \mathrm{mol}^{-1}$
2-Methyl-1-propanol (1) + Aniline (2) + Propanone (3)a											
$\mathrm{x}^{\prime}{ }^{\prime}=0.2494, \mathrm{H}_{\text {m, } 23}^{\mathrm{E}}=-984.02 \mathrm{~J} \cdot \mathrm{~mol}^{-1}$0.04350 .2386				$\mathrm{x}_{2}^{\prime}=0.5007, \mathrm{H}_{\mathrm{m}, 23}^{\mathrm{E}}=-1224.64 \mathrm{~J} \cdot \mathrm{~mol}^{-1}$				$\mathrm{x}_{2}{ }^{\prime}=0.7490, \mathrm{H}_{\mathrm{m}, 23}^{\mathrm{E}}=-809.60 \mathrm{~J} \cdot \mathrm{~mol}^{-1}$			
				0.0499	0.4757	297.5	-866.0	0.0555	0.7074	311.8	-452.8
0.0870	0.2277	542.3	-356.1	0.1003	0.4505	562.6	-539.3	0.1112	0.6657	586.2	-133.4
0.1313	0.2167	775.1	-79.7	0.1516	0.4248	796.8	-242.3	0.1679	0.6232	822.8	149.1
0.1758	0.2056	979.5	168.5	0.2026	0.3993	998.3	21.8	0.2257	0.5799	1022.2	395.3
0.2205	0.1944	1158.3	391.2	0.2536	0.3737	1168.3	254.3	0.2836	0.5366	1182.4	602.4
0.2650	0.1834	1309.5	586.2	0.3047	0.3481	1306.6	455.1	0.3418	0.4929	1306.4	773.6
0.3092	0.1723	1434.3	754.5	0.3545	0.3232	1413.4	622.9	0.3983	0.4507	1391.6	904.5
0.3531	0.1614	1534.4	897.9	0.4039	0.2985	1491.5	761.6	0.4536	0.4093	1443.9	1001.5
0.3964	0.1506	1610.5	1016.6	0.4521	0.2743	1541.5	870.5	0.4968	0.3769	1462.6	1055.2
0.4389	0.1399	1663.0	1110.9	0.4901	0.2553	1563.5	939.0	0.5357	0.3479	1459.9	1084.0
0.4714	0.1319	1685.5	1165.3	0.4938	0.2535	1556.3	936.4	0.5979	0.3013	1425.2	1099.4
0.5253	0.1184	1698.5	1231.4	0.5428	0.2289	1559.0	999.1	0.6525	0.2603	1361.7	1080.4
0.5904	0.1022	1666.1	1263.0	0.5899	0.2054	1535.9	1033.7	0.6895	0.2326	1299.4	1048.1
0.6359	0.0908	1612.7	1254.4	0.6350	0.1828	1488.8	1041.8	0.7241	0.2067	1227.3	1003.9
0.6717	0.0819	1552.5	1229.5	0.6705	0.1650	1435.3	1031.9	0.7452	0.1909	1175.3	969.0
0.6995	0.0750	1494.4	1198.6	0.6982	0.1511	1382.9	1013.3	0.7708	0.1717	1104.3	918.8
0.7196	0.0699	1445.5	1169.6	0.7041	0.1482	1370.3	1007.9	0.8021	0.1482	1005.0	844.8
0.7360	0.0659	1398.8	1139.0	0.7345	0.1330	1291.0	966.1	0.8243	0.1316	926.5	784.2
0.7785	0.0553	1265.2	1047.2	0.7710	0.1147	1188.6	908.1	0.8450	0.1161	847.5	722.0
0.8067	0.0482	1159.5	969.4	0.8004	0.0999	1092.5	848.0	0.8611	0.1041	780.7	668.3
0.8301	0.0424	1062.3	895.0	0.8223	0.0890	1011.7	794.2				
0.8453	0.0386	993.6	841.3	0.8377	0.0813	950.4	751.6				
				0.8506	0.0748	895.7	712.7				

$\mathrm{x}^{\prime}{ }^{\prime}=0.2510, \mathrm{H}_{\mathrm{m}, 23}^{\mathrm{E}}=1029.35 \mathrm{~J} \cdot \mathrm{~mol}^{-1}$				$\mathrm{x}_{2}^{\prime}=04994, \mathrm{H}_{\mathrm{m}, 23}^{\mathrm{E}}=1339.82 \mathrm{~J} \cdot \mathrm{~mol}^{-1}$				$\mathrm{x}_{2}^{\prime}=0.7502, \mathrm{H}_{\mathrm{m}, 23}^{\mathrm{E}}=1024.20 \mathrm{~J} \cdot \mathrm{~mol}^{-1}$			
0.2341	0.6988	166.4	1126.7	0.4703	0.4691	167.8	1426.4	0.7075	0.2355	178.2	1144.1
0.2169	0.6475	309.8	1199.6	0.4416	0.4405	312.6	1494.4	0.6685	0.2226	335.1	1247.4
0.2014	0.6012	432.5	1258.8	0.4138	0.4129	438.3	1545.9	0.6317	0.2103	473.3	1335.7
0.1863	0.5560	532.9	1297.0	0.3881	0.3871	549.8	1588.5	0.5962	0.1985	596.1	1410.0
0.1728	0.5157	617.5	1326.2	0.3630	0.3621	641.8	1613.3	0.5621	0.1871	702.9	1470.3
0.1599	0.4773	685.7	1341.6	0.3394	0.3386	720.4	1628.8	0.5297	0.1763	795.7	1517.7
0.1482	0.4423	741.6	1349.4	0.3186	0.3178	787.5	1640.2	0.4993	0.1662	873.8	1555.5
0.1369	0.4086	783.6	1345.1	0.2978	0.2971	840.9	1638.0	0.4702	0.1565	940.3	1599.2
0.1263	0.3770	813.7	1331.8	0.2598	0.2591	916.3	1611.5	0.4168	0.1388	1039.9	1608.8
0.1127	0.3366	838.7	1301.2	0.2491	0.2485	929.7	1569.5	0.4072	0.1356	1053.0	1608.9
0.0982	0.2931	845.9	1248.7	0.2220	0.2214	959.9	1554.0	0.3691	0.1229	1099.9	1603.8
0.0858	0.2560	839.3	1191.1	0.1978	0.1973	972.8	1502.2	0.3341	0.1112	1128.1	1584.2
0.0746	0.2228	818.3	1124.4	0.1753	0.1749	966.8	1436.1	0.3030	0.1009	1141.5	1555.2
0.0685	0.2043	798.6	1079.4	0.1641	0.1637	963.1	1402.3	0.2748	0.0915	1142.1	1517.3
0.0680	0.2031	799.9	1078.9	0.1528	0.1525	952.1	1361.1	0.2543	0.0847	1136.2	1483.4
0.0593	0.1771	764.6	1008.0	0.1426	0.1423	939.5	1321.3	0.2353	0.0783	1124.7	1445.9
0.0513	0.1531	719.9	930.2	0.1259	0.1256	910.3	1247.1	0.2199	0.0732	1111.3	1411.5
0.0458	0.1366	683.7	871.4	0.1103	0.1099	873.4	1168.4	0.2151	0.0716	1105.7	1399.4
0.0406	0.1213	644.0	810.7	0.0962	0.0959	829.6	1086.9	0.1931	0.0643	1077.3	1341.0
0.0359	0.1073	602.1	749.5	0.0861	0.0859	792.3	1022.6	0.1736	0.0578	1044.3	1281.3
				0.0786	0.0755	768.1	969.3	0.1562	0.0520	1008.7	1222.0
				0.0702	0.0700	720.6	908.5	0.1433	0.0477	977.7	1173.3
								0.1314	0.0437	945.7	1125.1
								0.1205	0.0401	913.1	1077.7

${ }^{\text {a }}$ Ternary mixtures were prepared by mixing pure 2-methyl-1-propanol with $\left\{\mathrm{x}_{2}^{\prime}\right.$ aniline $+\mathrm{x}_{3}{ }^{\prime}$ propanone\}. ${ }^{\mathrm{b}}$ Ternary mixtures were prepared by mixing pure benzene with $\left\{\mathrm{x}_{2}^{\prime}{ }^{\prime}\right.$ 2-methyl-1-propanol $+\mathrm{x}_{3}{ }^{\prime}$ aniline $\}$.

Table 4. Calculated Results of Excess Molar Enthalpies for the Binary Systems at 298.15 K

system ($\mathrm{i}+\mathrm{j}$)	no. of data points	$-\mathrm{h}_{\mathrm{ij}} / \mathrm{kJ} \cdot \mathrm{~mol}^{-1}$	$\mathrm{K}_{\mathrm{ij}}(\mathrm{T})$	$\mathrm{C}_{\mathrm{j}} / \mathrm{K}$	$\mathrm{C}_{\mathrm{ij}} / \mathrm{K}$	D_{ji}	D_{ij}	$\delta\left(\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}\right) / J \cdot \mathrm{~mol}^{-1}$	ref
$x_{1} 2$-methyl-1-propanol + x_{2} aniline	15	14.5	13.0	-22.89	-17.54	-1.5716	2.1292	15.9	this work
x_{1} 2-methyl-1-propanol + x2propanone	17	14.0	$13.0{ }^{\text {a }}$	-276.71	468.78	2.7462	-7.9737	16.6	this work
$x_{1} 2$-methyl-1-propanol + x_{2} benzene	16	8.3	$2.0{ }^{\text {a }}$	15.27	-0.5256	-1.6555	1.6440	12.1	Nagata and Tamura (1988)
x_{2} aniline + x3propanone	19	14.2	$6.0{ }^{\text {a }}$	-319.39	-1.6839	-1.7935	1.6273	13.7	Nagata and Tamura (1992)
x_{2} aniline + x_{3} benzene	15	10.8	$1.0^{\text {a }}$	-188.06	519.51	-1.0731	2.111	4.5	Nagata and Ksia̧żczak (1995)

${ }^{\mathrm{a}} \mathrm{T}=323.15 \mathrm{~K}$.
1-propanol + aniline + propanone and 2-methyl-1-propanol

+ aniline + benzene.

Data Analysis

The experimental results were analyzed with the UNI-QUAC-associated solution model proposed by Nagata et al.
(Nagata, 1993, 1994a,b; Nagata and Książczak, 1995; Nagata et al., 1996). The model includes chemical and physical contributions to the excess molar enthal pies. We consider a ternary mixture of 2-methyl-1-propanol (A), aniline (B), and propanone or benzene (C). The chemical term of the excess molar enthalpies is based on the selfassociation of alcohol and aniline molecules and the cross-

Table 5. Calculated Results of Excess Molar Enthalpies for the Ternary Systems at 298.15 K

system	no. of data points	ternary parameters		$\delta\left(\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}\right)^{\mathrm{a}} / \mathrm{J} \cdot \mathrm{mol}^{-1}$	$\delta\left(\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}\right)^{\mathrm{b}} / \mathrm{J} \cdot \mathrm{mol}^{-1}$
$x_{1} 2$-methyl-1-propanol $+x_{2}$ aniline $+x_{3}$ propanone	65	$\tau_{231}=-1.3786$	$\tau^{\prime} 231=1046.8360$	19.7	7.3
		$\tau_{132}=4.2074$	$\tau_{132}^{\prime}=2722.1352$		
		$\tau_{123}=0.7337$	$\tau^{\prime} 123=-2299.8415$		
$x_{1} 2$-methyl-1-propanol $+x_{2}$ aniline $+x_{3}$ benzene	69	$\tau_{231}=-0.7790$	$\tau^{\prime} 231=15.0039$	18.9	12.3
		$\tau_{132}=-0.8358$	$\tau^{\prime} 132=-23.9548$		
		$\tau_{123}=1.0334$	$\tau^{\prime} 123=320.4259$		

${ }^{\text {a }}$ Calculated using only binary parameters. ${ }^{\mathrm{b}}$ Calculated with binary and ternary parameters.

2-Methyl-1-propanol

Figure 3. Curves of constant excess molar enthalpies for the ternary mixtures of 2-methyl-1-propanol (1) + aniline (2) + propanone (3) at $298.15 \mathrm{~K}:(-)$ calculated from eqs 3 and 4.
association between unlike molecules according to the following chemical equilibria. The association of alcohol and aniline is defined by segment fractions $\Phi_{\mathrm{Ai}}, \Phi_{\mathrm{Bi}}$, and Φ_{Cl} of forming open linear chains of any length as follows:

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{A}}=\frac{\Phi_{\mathrm{Ai}+1}}{\Phi_{\mathrm{Ai}} \Phi_{\mathrm{Al}}} \frac{\mathrm{i}}{\mathrm{i}+1} \quad \text { for } \quad \mathrm{A}_{1}+\mathrm{A}_{\mathrm{i}}=\mathrm{A}_{\mathrm{i}+1} \\
& \mathrm{~K}_{\mathrm{B}}=\frac{\Phi_{\mathrm{Bi}+1}}{\Phi_{\mathrm{Bi}} \Phi_{\mathrm{B} 1}} \frac{\mathrm{i}}{\mathrm{i}+1} \quad \text { for } \quad \mathrm{B}_{1}+\mathrm{B}_{\mathrm{i}}=\mathrm{B}_{\mathrm{i}+1}
\end{aligned}
$$

where i ranges from 1 to ∞ and the equilibrium constants of alcohol and aniline are independent of the degree of association. The open linear chains A_{i} and B_{j} solvate to produce open cross-chains according to

$$
\begin{gathered}
K_{A B}=\frac{\Phi_{A i B j}}{\Phi_{A i} \Phi_{B j}} \frac{i j}{i r_{A}+j r_{B}} \text { for } A_{i}+B_{j}=A_{i} B_{j}, \\
K_{A B}=\frac{\Phi_{A i B j A k}}{\Phi_{A i B j} \Phi_{A k}} \frac{r_{A i B j}}{r_{A i B j A r} r_{A} r_{B}} \text { for } A_{i} B_{j}+A_{k}= \\
K_{A B}=\frac{\Phi_{B i A j B k}}{\Phi_{B i A j} \Phi_{\mathrm{Bk}} A_{k}} \frac{r_{B i A j}}{r_{B i A j B k} r_{A} r_{B}} \text { for } \quad B_{i} A_{j}+B_{k}= \\
B_{j} A_{j} B_{k}, \quad \text { etc. }
\end{gathered}
$$

The general formulas of the chemical complexes between A_{i} and B_{j} are expressed as $\left(A_{i} B_{j}\right)_{k},\left(B_{i} A_{j}\right)_{k}, B_{i}\left(A_{j} B_{k}\right)_{1}$, and $A_{i}\left(B_{j} A_{k}\right)_{l}$, where i, j, k, and I range from 1 to ∞. Further,

2-Methyl-1-propanol

Figure 4. Curves of constant excess molar enthalpies for the ternary mixtures of 2-methyl-1-propanol (1) + aniline (2) + benzene (3) at 298.15 K : (-) calculated from eqs 3 and 4.
these open homo- and heterochains solvate with C to form the chemical complexes $A_{i} C, B_{i} C,\left(A_{i} B_{j}\right)_{k} C,\left(B_{i} A_{j}\right)_{k} C$, $B_{i}\left(A_{j} B_{k}\right)_{I} C$, and $A_{i}\left(B_{j} A_{k}\right)_{I} C$ as follows:

$$
\begin{gathered}
\mathrm{K}_{\mathrm{AC}}=\frac{\Phi_{\mathrm{AiC} 1}}{\Phi_{\mathrm{Ai}} \Phi_{\mathrm{C} 1}} \frac{\mathrm{i}}{\mathrm{ir}_{\mathrm{A}}+\mathrm{r}_{\mathrm{C}}} \quad \text { for } \quad \mathrm{A}_{\mathrm{i}}+\mathrm{C}_{1}=\mathrm{A}_{i} \mathrm{C}, \\
\mathrm{~K}_{\mathrm{BC}}=\frac{\Phi_{\mathrm{BiC} 1}}{\Phi_{\mathrm{Bi}} \Phi_{\mathrm{C} 1}} \frac{\mathrm{i}}{\mathrm{ir}}+\mathrm{r}_{\mathrm{B}} \\
\text { for } \quad \mathrm{B}_{\mathrm{i}}+\mathrm{C}_{1}=\mathrm{B}_{i} \mathrm{C}, \text { etc. }
\end{gathered}
$$

Detailed expressions for the chemical term of excess molar enthalpies and the mass balance equations to solve the monomer segment fractions $\Phi_{\mathrm{A} 1}, \Phi_{\mathrm{B} 1}$, and $\Phi_{\mathrm{C} 1}$ have been described previously (Nagata, 1994a,b). The equilibrium constant and enthalpy of hydrogen-bond formation for 2-methyl-1-propanol (A) and aniline (B) were taken from previous papers: $\mathrm{K}_{\mathrm{A}}=50.6$ (Brandani, 1983) at 323.15 K and $h_{A}=-23.2 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ (Stokes and Burfitt, 1973) for 2-methyl-1-propanol, and $K_{B}=15$ and $\mathrm{h}_{\mathrm{B}}=-15.4 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ for aniline (Nagata, 1993, 1994a,b). Table 4 gives the solvation constant and enthalpy of complex formation between unlike molecules taken from Nagata (1993, 1994ac) and those of 2-methyl-1-propanol + aniline or +propanone estimated by fitting the model to excess molar enthal pies. These enthalpies of formation were assumed to be independent of temperature and the temperaturedependence of the equilibrium constants is fixed by the van't Hoff equation. The pure structural parameters r_{i} and q_{j} were estimated by the method of Vera et al. (1977) and the geometric size parameters of the chemical species are expressed in terms of those of pure monomeric properties.

The physical term of $\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}$ is obtained from the residual term of the Gibbs free energy of the UNIQUAC equation through the Gibbs-Helmholtz relation. The energy parameter a_{ij} is assumed to be a function temperature: $\mathrm{a}_{\mathrm{ij}}=$ $\mathrm{C}_{\mathrm{ij}}+\mathrm{D}_{\mathrm{ij}}\{(\mathrm{T} / \mathrm{K})-273.15\}$ and the binary parameter τ_{ij} is expressed by $\tau_{\mathrm{ij}}=\exp \left(-\mathrm{a}_{\mathrm{ij}} / T\right)$. The binary parameters were obtained by minimizing the sum-of-squares between the experimental binary $\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}$ and values calculated from the model with the association and solvation parameters by means of Nelder and Mead (1965). Table4 gives the binary parameters and the absolute arithmetic mean deviations $\delta\left(\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}\right)$ between the binary experimental and calculated values.

The ternary parameters τ_{ijk} and $\tau_{\mathrm{i} \mathrm{ijk}}=\left\{\partial \tau_{\mathrm{ijk}} / \partial(1 / \mathrm{T})\right\}_{\mathrm{p}}$ are determined by fitting the model to the ternary experimental $\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}$ using the association and solvation parameters with the binary parameters obtained above. Table 5 lists the ternary parameters and compares the ternary experimental results with the values predicted using the binary parameters alone and with those correlated using the binary and additional ternary parameters.

Conclusions

Ternary excess molar enthalpies have been measured for the mixtures 2-methyl-1-propanol + aniline + propanone and 2-methyl-1-propanol + aniline + benzene at 298.15 K, and the results were compared with the polynomial equation and UNIQUAC-associated solution model. Good agree ments are obtained between the experimental results and values calculated by the polynomial equation and UNI-QUAC-associated solution model having the binary and additional ternary parameters.

Literature Cited

Brandani, V. A Continuous Linear Association Model for Determining the Enthalpy of Hydrogen-Bond Formation and the Equilibrium Association Constant for Pure Hydrogen-Bond Liquids. Fluid Phase Equilib. 1983, 12, 87-104.
Brown, I.; Fock, W.; Smith, F. Thermodynamic properties of solutions of normal and branched al cohols in benzene. J. Chem. Thermodyn. 1969, 1, 273-291.
Chao, J. P.; Dai, M. Studies of Thermodynamic Properties of Binary Mixtures Containing an Alcohol XI. Excess Enthalpies of Each of (One of the Four Butanols + Chlorobenzene or Aniline). J. Chem. Thermodyn. 1989, 21, 337-342.
Deshpande, D. D.; Pandya, M. V. Thermodynamics of binary solutions. I. Heats of mixing of aniline in benzene, carbon tetrachloride, and chlorobenzene. Trans. Faraday Soc. 1965, 61, 1858-1868.
Deshpande, D. D.; Pandya, M. V. Thermodynamics of binary solutions. III. Heats of mixing of aniline in several polar solvents. Trans. Faraday Soc. 1967, 63, 2346-2348.

Nagata, I. Excess Enthalpies of (Aniline + Butan-1-ol) and of (Aniline + Butan-1-ol + Benzene) at the Temperature 298.15 K . J. Chem. Thermodyn. 1993, 25, 1281-1285.
Nagata, I. Thermodynamics of Associated Solutions. Correlation of Ternary Excess Molar Enthal pies for Aniline + Alkanol + Benzene or Acetone Mixtures Using the UNIQUAC Associated-Solution Model. Thermochim. Acta 1994a, 244, 21-32.
Nagata, I. Excess Molar Enthal pies of Binary and Ternary Mixtures Containing Aniline and 2-Butanol. Thermochim. Acta 1994b, 232, 19-28.
Nagata, I. Isothermal (Vapour-Liquid) Equilibria of (Propan-1-ol + 2-methylpropan-1-ol + Acetonitrile + Benzene). J. Chem. Thermodyn. 1994c, 26, 709-712.
Nagata, I.; Kazuma, K. Heats of Mixing for the Ternary System Ethanol - 1-Propanol-Cyclohexane at $25^{\circ} \mathrm{C}$. J. Chem. Eng. Data 1977, 22, 79-84.
Nagata, I.; Tamura, K. Excess molar enthalpies of (butan-1-ol or 2-methyl-1-propanol + acetonitrile), (2-methyl-1-propanol + benzene), and (butan-1-ol or 2-methyl-1-propanol + acetonitrile + benzene) at the temperature 298.15 K. J. Chem. Thermodyn. 1988, 20, 1101-1107.
Nagata, I.; Tamura, K. Excess molar enthalpies of (aniline + acetonitrile or benzene) and of (aniline + acetonitrile + benzene) at the temperature 298.15 K. J. Chem. Thermodyn. 1992, 24, 613-617.
Nagata, I.; Ksiązczak, A. Excess enthalpies of (aniline + propanone) and of (ethanol or propan-2-ol + aniline + propanone) at the temperature 298.15 K. J. Chem. Thermodyn. 1995, 27, 1235-1240.
Nagata, I.; Tamura, K.; Kataoka, H.; Ksiązczak, A. Excess Molar Enthalpies of Ternary Systems Butan-1-ol or Butan-2-ol + Aniline + Propanone and of Binary Systems Butan-1-ol or Butan-2-ol + Propanone at the Temperature 298.15 K. J. Chem. Eng. Data 1996, 41, 593-597.
Nelder, J. A.; Mead, R. A Simplex Method for Minimization. Comput. J. 1965, 7, 308-313.

Nigam, R. K.; Singh, P. P.; Singh, K. C. Thermodynamics of molecular interactions in aniline + benzene. Can. J. Chem. 1979, 57, 22112216.

Pannetier, G.; Abello, L. H bond study: H-N-H. Bull. Soc. Chim. Fr. 1965, 2048-2058.
Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents. Physical Properties and Methods of Purification, 4th ed.; Wiley-Interscience: New York, 1986.
Sosnkowska-Kehiaian, K.; Kehiaian, H. Heats of mixing of aniline, N -methylaniline, and N, N-dimethylaniline with several hydrocarbons. Bull. Acad. Pol. Sci., Ser. Sci. Chim. 1966, 14, 573-578.
Stokes, R. H.; Burfitt, C. Enthalpies of dilution and transfer of ethanol in non-polar solvents. J. Chem. Thermodyn. 1973, 5, 623-631.
Vera, J. H.; Sayegh, S. G.; Ratcliff, G. A. A Quasi-Lattice-Local Composition Model for the Excess Gibbs Free Energy of Liquid Mixtures. Fluid Phase Equilib. 1977, 1, 113-135.
Vilcu, R.; Cenuse, Z. Study of activity coefficients and hydrogen bridgebond energy by cal orimetric measurement. Wiss. Z. Tech. Hochsch. "Carl Schorlemmer" Leuna-Merseburg 1975, 17, 45-52.

Received for review May 1, 1996. Accepted August 13, 1996. ${ }^{*}$
J E960155F

[^0]
[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, September 15, 1996.

